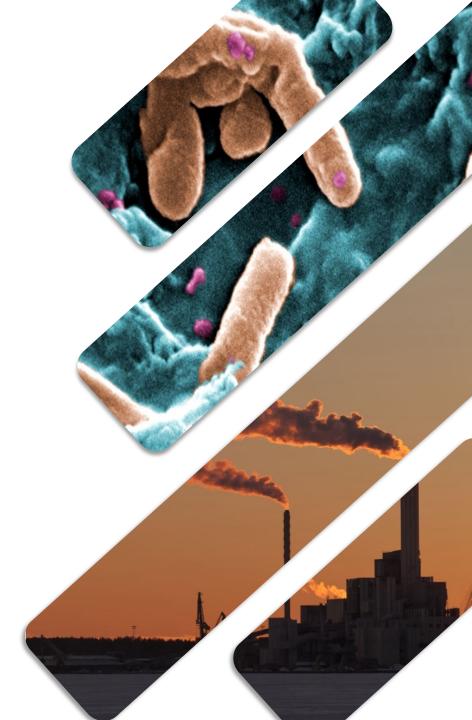
Joint Graduate Student Seminar


Unveiling the Nexus between Antimicrobial Resistance and Air Pollution

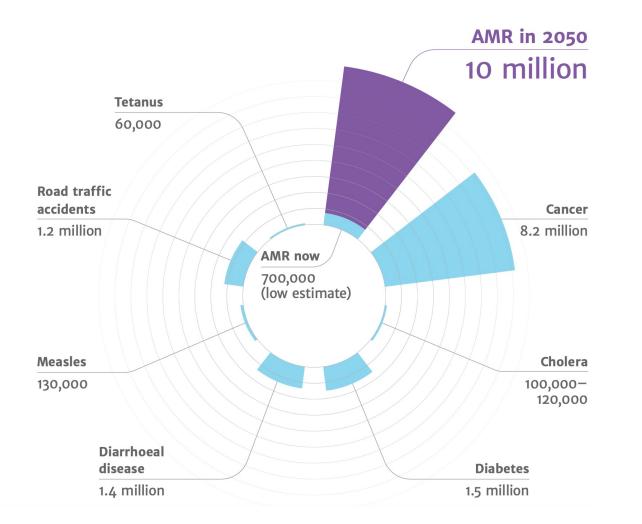
Presented by: Andrew CH KAN (Year 1 PhD Student)

Supervisor: Professor Xiao YANG

24 November 2023

Department of Microbiology, CUHK

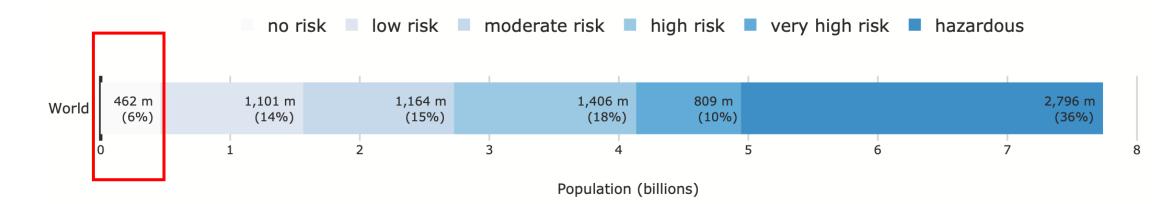
Outline


Background: Antimicrobial Resistance and PM_{2.5}

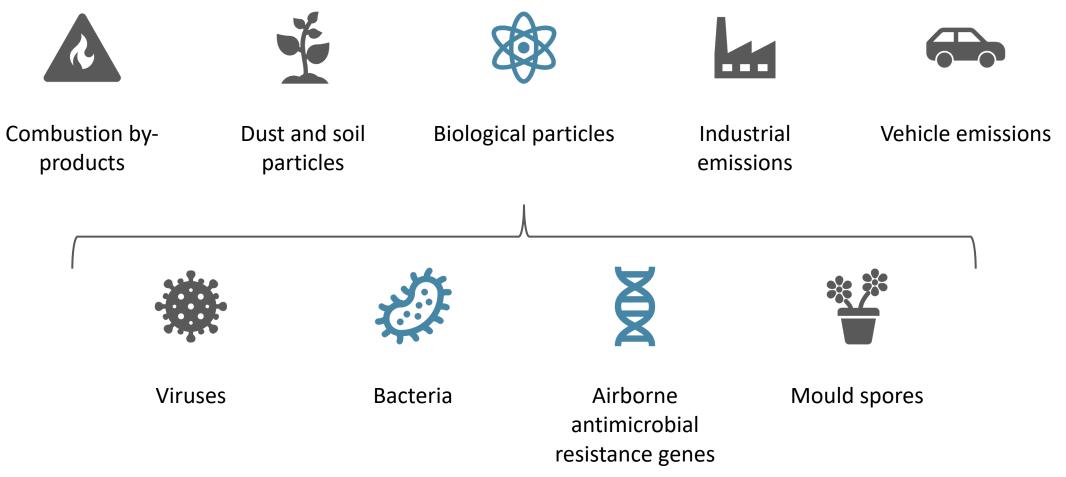
Composition of PM_{2.5}

Global Analysis: The Lancet Planetary Health Article

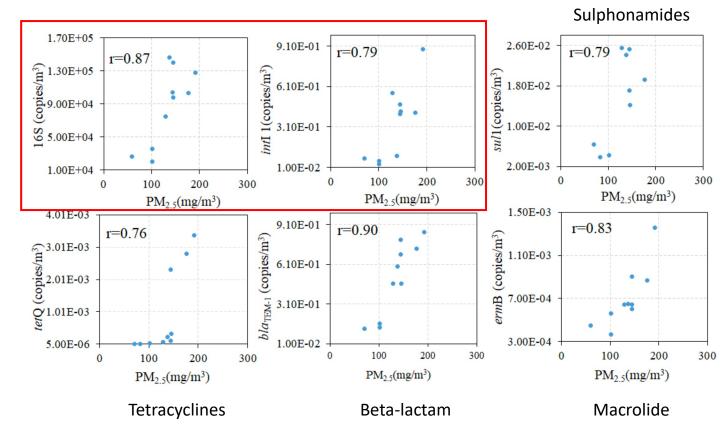
Conclusion


Antimicrobial Resistance (AMR)

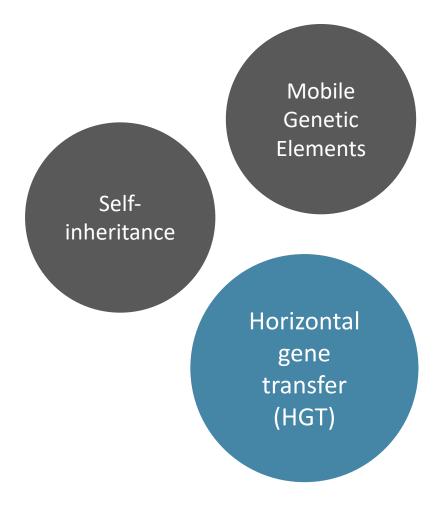
one person every three seconds if AMR is not tackled now. Air Pollution – Particulate Matter ($PM_{2.5}$) PM_{2.5}: Fine particles with a size $\leq 2.5 \ \mu m$


- WHO Global Air Quality Guidelines (2021)
- Annual average concentrations of $PM_{2.5} < 5 \mu g/m^3$ (i.e., no risk)
- 24-hour average exposures < 15 μ g/m³ (limiting to 3~4 times a year)

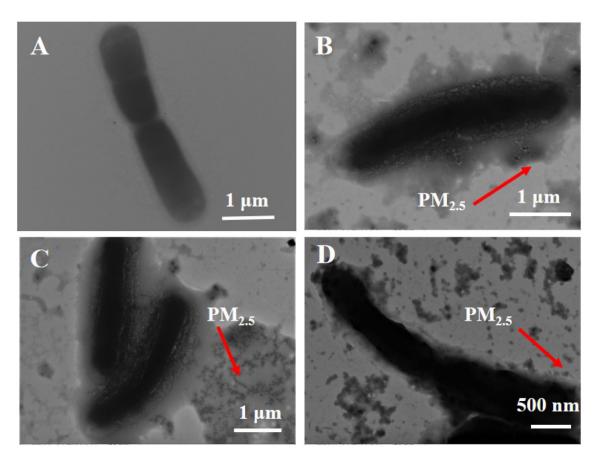
Relationship between Antimicrobial Resistance and PM_{2.5}?


What can be found in $PM_{2.5}$?

Inside PM_{2.5}

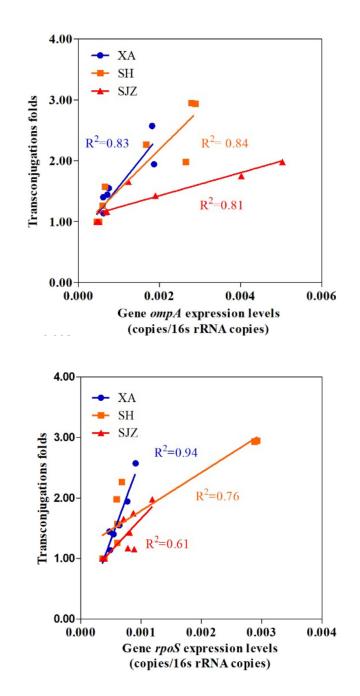

(1) Increased Amounts of Bacteria

- Method: qPCR
- Higher $[PM_{2.5}] \rightarrow$ Higher [16S rRNA]
 - R = 0.87
 - Dead vs. live cells??
- Meanwhile higher [*intl 1* gene + ARGs]
 - R = 0.79
 - Class 1 integron-integrase gene
- ➔ Antimicrobial resistant bacteria ↑

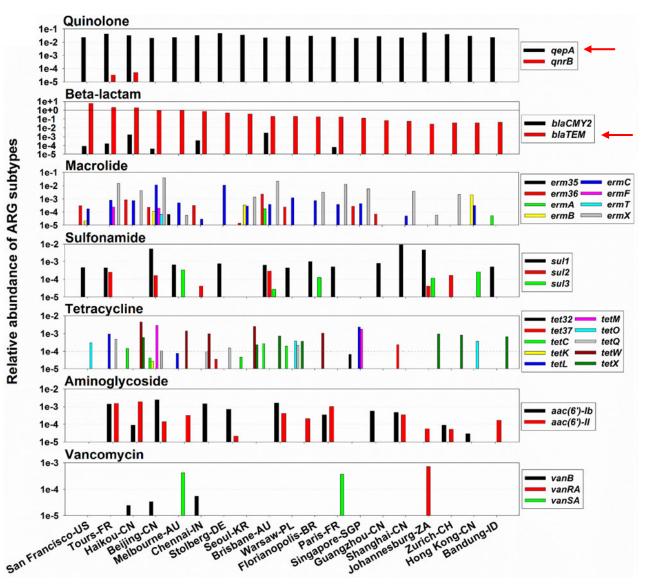

(2) Antimicrobial Resistance Genes (ARGs)

- Detected in all environments
- Anthropogenic activities are the main drivers of the dissemination of ARGs
- Can spread from one place to another in the environment
- Smog increases PM_{2.5} and ARGs (<u>Hu et al., Sci.</u> <u>Total Environ. 2018, 615, 1332</u>)

PM_{2.5} – Driver of Horizontal Gene Transfer (HGT)


- Control: intact and smooth with clear border
- Exposed group:
 - \uparrow Pilus or pores on the surface
 - Cell membranes damaged
 - Cells membrane filled with many spherical and highly dense particles → Pores
- \uparrow *ompA* expression with increasing [PM_{2.5}]
- Facilitate cell permeability and plasmid transfer

(A): Control. (B)-(D): *E. coli* S17-1 and K12 exposed to 125 μ g/mL PM_{2.5} from different regions. [During conjugative transfer] 9


Gene Expression and Conjugation Rate

- Effects of different PM_{2.5} samples to conjugation rate showed
- Top: outer membrane protein gene (ompA)
- Bottom: oxidative stress regulatory gene (rpoS)
 - Induced by intracellular ROS
- Positive correlation between gene expression and conjugative transfer

ARGs in PM_{2.5}

- Target: airborne ARGs (from automobile air conditioning (AC) filter)
- Method: qPCR
- Normalised by 16S rRNA gene
- 30 ARG subtypes conferring resistance to 7 types of common antibiotics

Global Analysis

Lancet Planetary Health

Association between particulate matter (PM)_{2.5} air pollution and clinical antibiotic resistance: a global analysis

Zhenchao Zhou, Xinyi Shuai, Zejun Lin, Xi Yu, Xiaoliang Ba, Mark A Holmes, Yonghong Xiao, Baojing Gu, Hong Chen

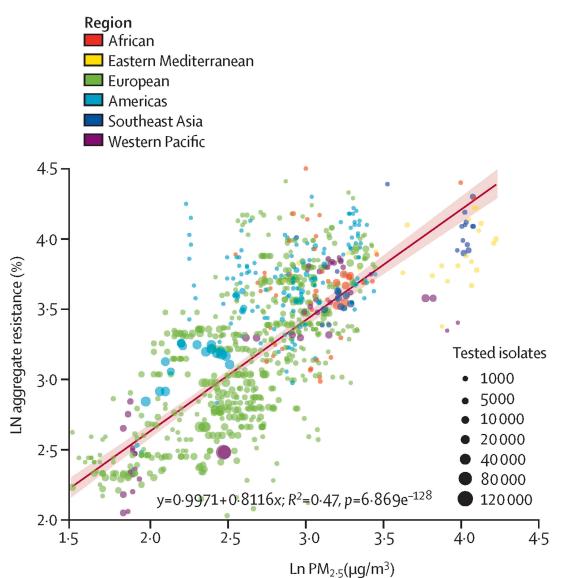
Summary

Background Antibiotic resistance is an increasing global issue, causing millions of deaths worldwide every year. Particulate matter (PM)_{2.5} has diverse elements of antibiotic resistance that increase its spread after inhalation. However, understanding of the contribution of PM_{2.5} to global antibiotic resistance is poor. Through univariate and multivariable analysis, we aimed to present the first global estimates of antibiotic resistance and burden of premature deaths attributable to antibiotic resistance resulting from PM_{2.5} pollution.

- Data on multiple potential predictors (i.e., air pollution, antibiotic use, sanitation services, economics, health expenditure, population, education, climate, year, and region) were collected in 116 countries from year 2000 to 2018
- Univariate and multivariable analysis were conducted
- Future scenarios were predicted until 2050

Lancet Planet Health 2023; 7: e649–59

College of Environmental and Resource Sciences (Z Zhou PhD, X Shuai BSc, Z Lin BSc, X Yu BSc, Prof B Gu PhD, Prof H Chen PhD),



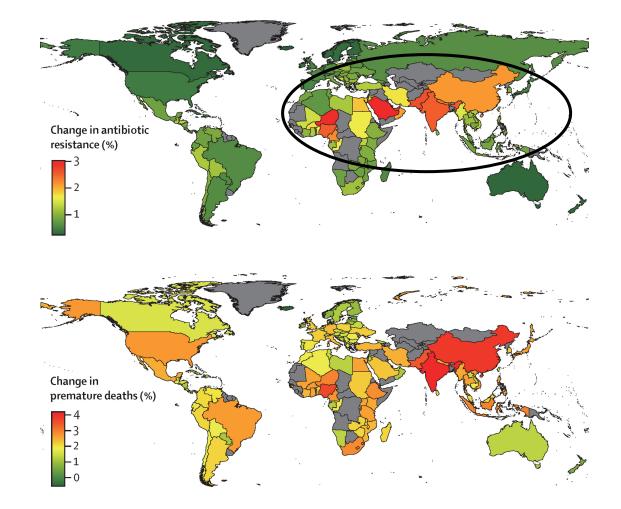
oa

Positive Correlation between PM_{2.5} and AMR

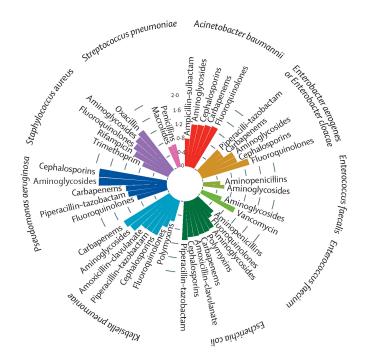
- Estimated 0.48 million premature deaths and 18.2 millions of life lost in 2018 worldwide due to PM_{2.5}-associated AMR
- Corresponding to an annual welfare loss of US\$395 billion due to premature deaths
- $R^2 = 0.47$
- p < 0.0001

Multivariable Analysis

- Inversely correlated:
 - Basic drinking-water services
 - Health expenditure
 - Rainfall
- Positively correlated:
 - Antibiotic use
 - PM_{2.5}
- Infection control policies??
- Unrestricted use of antibiotics in animal farming??

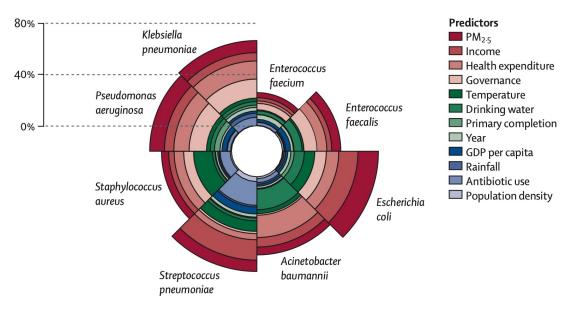

	Coefficient	Dominance (95% CI)	p value
DM			-
PM _{2.5}	0.433	10.9% (4.3–17.4)	<0.0001
CHE per capita	-0.00209	10.1% (2.8–17.3)	<0.0001
People using at least basic drinking-water services	-0.582	2.7% (0.7–4.7)	<0.0001
Antibiotic use	0.479	2.4% (1.8–2.9)	<0.0001
Rainfall	-0.00272	0.9% (0.7–1.1)	<0.0001
Gross domestic product per capita	-0.0000423	9.5% (2.2–16.8)	0.31
Temperature	-0.0305	4.9% (0.0–9.7)	0.67
Governance	-0.354	4.1% (0.8–7.4)	0.92
Completion of primary education	0.0675	1.2% (0.0–2.4)	0.053
Population density	0.000586	0.2% (0.1–0.3)	0.71
Country income classification	Yes	11.3% (3.7–18.9)	<0.0001
Region	Yes	7·5% (3·5–11·4)	<0.0001
Year	Yes	6.7% (4.6–8.8)	<0.0001
R ²	0.72		
Total number of observations	882		

Income, Region, and Year are dummy predictors. Yes means that predictor has been considered in the analysis. CHE=current health expenditure. PM=particulate matter.


Table: Fixed-effects panel model of predictors associated with antibiotic resistance

What If There is a 10% Increase of [PM_{2.5}]?

- Antibiotic resistance (top): Africa & Asia affected the most
 - Saudi Arabia: 3.0%
 - Niger: 2.9%
 - Nigeria & India: 2.5%
 - China: 2.1%
- Premature death (bottom): China & India (population size)
- Lack of data in low- and middle-income countries

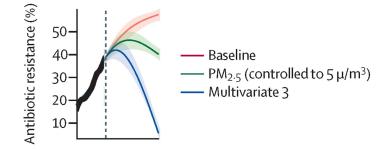


WHO Global Priority Pathogens List

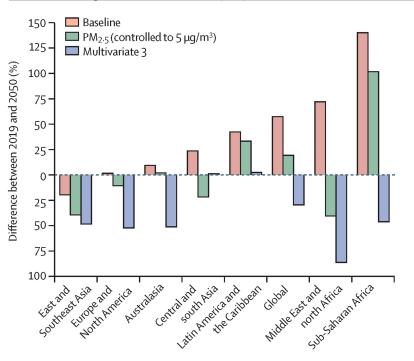
Slope of relationship between concentration of $PM_{2.5}$ and antibiotic resistance

Increase in 1% of $PM_{2.5}$ across regions was associated with increases in resistance ranging from of 0.5% to 1.9% in each of the nine pathogens (p < 0.0001)

Contribution of predictors to antibiotic resistance for each pathogen


PM_{2.5} consistently contributed to the increase of antibiotic resistance, ranging from 4.0% for *E. faecium* to 16.0% for *E. coli*

Data Projection by 2050 (Assuming Causal-Relationship)


	Without Intervention (Baseline)	PM _{2.5} reduction to 5 μg/m ³	Multivariate 3 [*]
Antibiotic resistance	个 17%	↓ 16.8%	↓ 50%
Premature deaths attributable to resistant pathogens	个 56.4%	↓ 23.4%	↓ 54.5%
Countries with the biggest impacts	Sub-Saharan Africa	North Africa and West Asia	North Africa and West Asia

*Multivariate 3: Combined control factors of current health expenditure (CHE) doubled, **50% reduced antibiotic use**, 100% basic drinking water services (BDWS), and $PM_{2.5}$ (5 µg/m³)

Antibiotic Resistance

Mortality Difference (%) Attributable to AMR

Limitations of the Study

- Observational study
 - Experimental data needed to validate PM_{2.5}–AMR relationship
- Limitations of aggregate average data
 - Failure to capture regional variations within large countries may overlook important details
- Study did not consider other confounding factors (environmental, social, economic)
 - Differences between countries with different PM_{2.5} levels, and between different years, apart from the PM_{2.5} levels themselves
 - Statistically adjusted some factors to include in their statistical models

Conclusion

- Preliminary data showed today suggested there is a potential relationship between $\mbox{PM}_{\rm 2.5}$ and \mbox{AMR}
- The exact mechanisms between PM_{2.5} and AMR remains to be elucidated (transfer of ARGs?)
- The main driver of AMR is still misuse and overuse of antibiotics
- "One-Health" framework and global actions are needed

Do you have any questions?

References

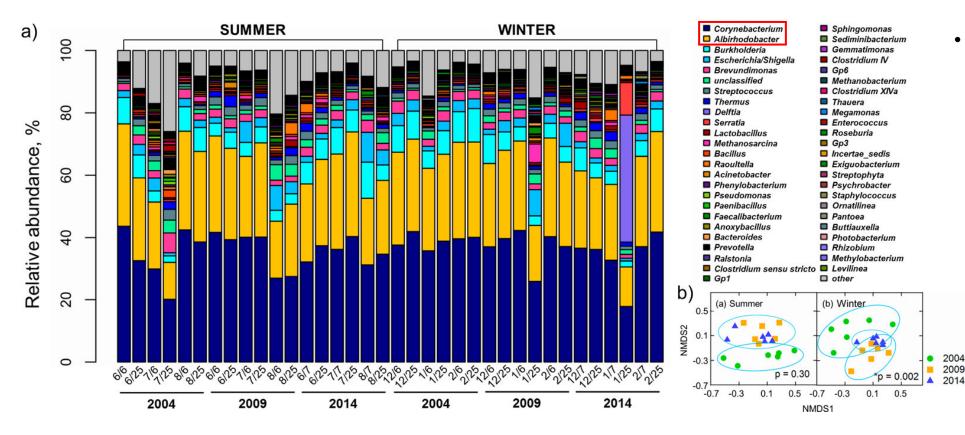
Environmental Protection Department (2023). *Air Quality in Hong Kong 2022: Statistical Summary*. <u>https://www.aqhi.gov.hk/api_history/english/report/files/2022StatSum_en.pdf</u>

- Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. *The ISME Journal*, *9*(6), 1269-1279. https://doi.org/10.1038/ismej.2014.226
- Hu, J., Zhao, F., Zhang, X., Li, K., Li, C., Ye, L., & Li, M. (2018). Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. *Science of the Total Environment*, *615*, 1332-1340. <u>https://doi.org/10.1016/j.scitotenv.2017.09.222</u>
- Li, J., Cao, J., Zhu, Y., Chen, Q., Shen, F., Wu, Y., Xu, S., Fan, H., Da, G., Huang, R., Wang, J., de Jesus, A. L., Morawska, L., Chan, C. K., Peccia, J., & Yao, M. (2018). Global survey of antibiotic resistance genes in air. *Environmental Science & Technology*, *52*(19), 10975-10984. https://doi.org/10.1021/acs.est.8b02204
- Li, L., Wang, Q., Bi, W., Hou, J., Xue, Y., Mao, D., Das, R., Luo, Y., & Li, X. (2020). Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes. *Environmental Science & Technology*, *54*(7), 3900-3908. <u>https://doi.org/10.1021/acs.est.9b07641</u>

References

Rentschler, J., & Leonova, N. (2023). Global air pollution exposure and poverty. *Nature Communications*, 14(1), 4432. https://doi.org/10.1038/s41467-023-39797-4

- Review on Antimicrobial Resistance. (2016). *Tackling drug-resistant infections globally: final report and recommendations*. Wellcome Collection. <u>https://wellcomecollection.org/works/thvwsuba</u>
- World Health Organization. (2021). WHO global air quality guidelines. Particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. <u>https://www.who.int/publications/i/item/9789240034228</u>
- Xie, S., Gu, A. Z., Cen, T., Li, D., & Chen, J. (2019). The effect and mechanism of urban fine particulate matter (PM_{2.5}) on horizontal transfer of plasmid-mediated antimicrobial resistance genes. *Science of the Total Environment*, 683, 116-123. <u>https://doi.org/10.1016/j.scitotenv.2019.05.115</u>
- Zhou, Z., Shuai, X., Lin, Z., Yu, X., Ba, X., Holmes, M. A., Xiao, Y., Gu, B., & Chen, H. (2023). Association between particulate matter (PM)_{2.5} air pollution and clinical antibiotic resistance: a global analysis. *The Lancet Planetary Health*, 7(8), e649-e659. https://doi.org/10.1016/S2542-5196(23)00135-3

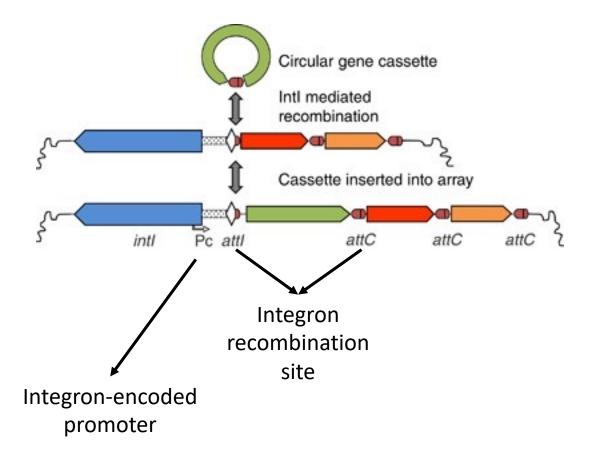

Appendix 1: PM_{2.5} Levels in Hong Kong 2022

			(2.57	, (initiaat			ο μ9/11	-				
Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Central/Western	25	13	18	15	10	6	8	8	23	15	13	17	14
Southern	19	10	13	13	9	6	8	7	21	13	11	16	12
Eastern	22	12	16	14	10	5	8	7	21	14	13	17	13
Kwun Tong	23	12	18	16	12	9	10	8	20	13	12	17	14
Sham Shui Po	21	12	15	13	9	6	9	8	18	12	10	16	12
Kwai Chung	25	14	18	15	11	8	10	9	24	15	13	19	15
Tsuen Wan	22	14	14	10	12	8	7	9	25	17	15	20	14
Tseung Kwan O	19	10	15	14	9	6	9	8	23	17	14	18	13
Yuen Long	28	16	17	16	12	6	9	9	24	15	15	23	16
Tuen Mun	30	19	20	18	13	8	11	9	27	19	15	25	18
Tung Chung	30	15	15	14	10	5	9	9	23	15	12	19	14
Tai Po	23	13	15	14	10	6	10	8	22	15	13	20	14
Sha Tin	22	12	15	14	10	6	9	7	22	14	10	17	13
North	21	12	14	10	9	6	9	7	22	17	15	21	14
Tap Mun	20	10	13	12	7	4	7	6	20	14	11	17	12
Causeway Bay	30	18	24	19	16	13	15	16	31	22	20	25	21
Central	27	15	20	18	13	9	12	12	26	18	16	21	18
Mong Kok	26	13	20	17	13	8	10	10	25	18	17	20	16

Pollutant: Fine Suspended Particulates ($PM_{2.5}$) (Annual limit value = 25 μ g/m³)

*Unit: microgram per cubic metre (µg/m³)

Appendix 2: PM_{2.5}-Borne Bacterial Community in Xi'an


(a) Distribution bar plot of $PM_{2.5}$ -borne bacterial community compositions in $PM_{2.5}$ samples collected in summer and winter in **Xi'an** on the genus level and the corresponding illustration of each genus, with sampling dates displayed in *X*-axis; and (b) NMDS analyses for the relative abundances of $PM_{2.5}$ -borne bacterial genera in respective summer and winter among the years of 2004, 2009, and 2014 over a 10-year time span, where *p* is the statistical result of ANOSIM; **p*-value < 0.05 indicates a statistical significance.

- Faecalibacterium and
 Methanosarcina in the year
 2009, and Delftia, Serratia, and
 Raoultella in the year 2014 had
 significantly increased in winter
 - Facultatively anaerobic or strictly anaerobic
 - Enriched in anthropogenic sources

➔ The changes in winter might be explained by the increasing contribution from anthropogenic sources to airborne PM_{2.5} that resulted from the increasing population density

Appendix 3: Class 1 Integron-Integrase Gene (intl 1)

- Component of class 1 integrons
- Integrons are common in bacteria (~15% population contains integrons)
- Integrons allow microbial cells to capture and express exogenous gene cassettes
- In class 1 integrons, these cassettes are often antimicrobial resistance genes (ARGs)
- A proxy for anthropogenic impact

